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SELF–TUNING PREDICTIVE CONTROL
OF NONLINEAR SERVO–MOTOR

Vladimı́r Bobál – Petr Chalupa – Marek Kubalč́ık – Petr Dostál
∗

The paper is focused on a design of a self-tuning predictive model control (STMPC) algorithm and its application to a
control of a laboratory servo motor. The model predictive control algorithm considers constraints of a manipulated variable.
An ARX model is used in the identification part of the self-tuning controller and its parameters are recursively estimated
using the recursive least squares method with the directional forgetting. The control algorithm is based on the Generalised
Predictive Control (GPC) method and the optimization was realized by minimization of a quadratic and absolute values
objective functions. A recursive control algorithm was designed for computation of individual predictions by incorporating a
receding horizon principle. Proposed predictive controllers were verified by a real-time control of highly nonlinear laboratory
model — Amira DR300.
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1 INTRODUCTION

Predictive control is one of successful methodologies
which draw much research interest and attention over
recent decades. First predictive control algorithms have
been applied as an effective tool for control of multidi-
mensional industrial processes with constraints more than
25 years ago. Because of its computational complexity,
predictive control has traditionally been used for slow
processes only. However, with the advances made in the
computer technology over the last decade computational
speed is not a major limitation for many real-life appli-
cations.

Predictive control methods have evolved in many dif-
ferent variants and under several names (Model Pre-
dictive Control (MPC), Generalized Predictive Control
(GPC) [1], Receding Horizon Control (RHC) [2, 3]). Ini-
tially, all variants of the predictive control were developed
independently. Several papers that try to clarify the con-
nections between the variants and to consolidate them
were published in early 90s of the last century [4–6]. Sur-
veys of the present-day predictive control methods can be
found in [7–13].

Theoretical research in the area of predictive control
has a great impact on the industrial world and there are
many applications of predictive control in industry. Its de-
velopment has been significantly influenced by industrial
practice. At present, predictive control with a number
of real industrial applications belongs among the most
often implemented modern industrial process control ap-
proaches. Fairly actual and extensive surveys of industrial
applications of predictive control are presented in [14–17].

One of the major advantages of predictive control is its
ability to do on-line constraints handling in a systematic

way. Almost all industrial applications hold constraints
of input, output and state space variables. The predic-
tive control strategy therefore eliminates drawbacks of
the other optimal methods like Linear Quadratic (LQ)
and Linear Quadratic Gaussian (LQG) methods, which
operate on a finite horizon without capability to handle
constraints. In practical control problems, actuators are
obviously limited in their operational ranges. This is also
the case of the laboratory servo-motor Amira DR300 [18].

The aim of this contribution is an implementation of
the self-tuning predictive controller including constraints
of the manipulated variable for control of the objec-
tive laboratory equipment. An input-output CARIMA
(Controlled Auto-Regressive Integrated Moving Average)
model was chosen as a model describing the controlled
process. Its parameters were estimated using the recur-
sive least squares method with the directional forgetting.
[19–21]. A quadratic cost function and absolute values
cost function were used in the optimization part of the
algorithm. The Generalised Predictive Control (GPC)
method [12, 13] was applied. A recursive algorithm, which
enables computation of predictions for arbitrary horizons,
was designed.

The basic structure of the MPC is shown in Fig. 1.
A model is used to predict the future process outputs y ,
based on the past and current values and on the proposed
optimal future actions (manipulated variables) u . These
actions are calculated by the optimizer taking into ac-
count the cost function (where the future tracking error
is considered) as well as the constraints.

The paper is organized in the following way: prob-
lems of implementation of predictive control based on
the minimization of the quadratic criterion (MPC QC)
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Fig. 1. Block diagram of basic structure of MPC

are described in Section 2 and on the minimisation of the
absolute values criterion (MPC AC) in Section 3. The re-
cursive identification for calculation of the parameter es-
timates is briefly introduced in Section 4. Description of
the laboratory model Amira DR300 and is the content of
Section 5. Section 6 presents an adaptive predictive con-
trol in the real-time conditions of the Amira DR300 servo
system. Results obtained by application of quadratic cost
function and absolute values cost function are compared
in this section. Section 7 concludes the paper.

2 MPC BASED ON MINIMISATION

OF QUADRATIC CRITERION

The standard cost function used in GPC contains
quadratic terms of control error and control increments
on a finite horizon into the future

J =
N2
∑

i=N1

[

ŷ(k+ i)−w(k+ i)
]2

+
Nu
∑

i=1

[

λ(i)∆u(k+ i− 1)
]2

(1)
where ŷ(k+i) is the process output of i steps in the future
predicted on the base of information available upon the
time k , w(k + i) is the sequence of the reference signal
and ∆u(k + i − 1) is the sequence of the future control
increments that have to be calculated. Parameters N1 ,
N2 and Nu are called minimum, maximum and control
horizon. The parameter λ(i) is a sequence which affects
future behaviour of the controlled process, generally, it is
chosen in the form of constants or exponential weights.
The output of the model (predictor) is computed as the
sum of the forced response yn and the free response y0

ŷ = yn + y0 . (2)

It is possible to compute the forced response as the multi-
plication of the matrix H (Jacobian Matrix of the model)
and the vector of future control increments ∆u , which is
generally a priori unknown

yn = H∆u (3)

where

H =

⎡

⎢

⎢

⎢

⎢

⎣

h1 0 0 . . . 0
h2 h1 0 . . . 0
h3 h2 h1 . . . 0
...

...
...

. . .
...

hN2
hN2−1 hN2−2 . . . hN2−Nu+1

⎤

⎥

⎥

⎥

⎥

⎦

(4)

is matrix containing step responses.

It follows from equations (3) and (4) that the predictor
in a vector form is given by

ŷ = H∆u+ y0 . (5)

Minimization of the cost function (1) now becomes a di-
rect problem of linear algebra. The solution in an uncon-
strained case can be found by setting partial derivative
of J with respect to ∆u to zero and yields

∆u = −(H⊤
H+ λI)−1

H
⊤(y0 −w) = −H

−1
H

g (6)

where HH and g are the Hesse-Matrix and the gradient.

Denoting the first row of the matrix
(

H⊤H + λI
)−1

H⊤

by K , the actual control increment can be calculated as

∆u(k) = K(w − y0) . (7)

2.1 Derivation of the prediktor for second order
model

It resulted from identification experiments that the dy-
namical behaviour of the model DR300 can be described
by second order model in individual set points. Actual
parameters of the model depend on the set point. Let us
consider a SISO process with the denominator and nu-
merator polynomials in the form

A
(

z−1
)

= 1 + a1z
−1 + a2z

−2;

B
(

z−1
)

= b1z
−1 + b2z

−2.
(8)

Let us assume that C
(

z−1
)

= 1, the CARIMA description
of the system is in the form

∆A
(

z−1
)

y(k) = B
(

z−1
)

∆u(k) + nc(k) . (9)

The non-measurable random component nc(k) is as-
sumed to have zero mean value E[nc(k)] = 0 and con-
stant covariance (dispersion) R = E[n2

c(k)] .

The difference equation of the CARIMA model with-
out the unknown term nc(k) can be expressed as

y(k) = (1− a1)y(k − 1) + (a1 − a2)y(k − 2) + a2y(k − 3)

+ b1∆u(k − 1) + b2∆u(k − 2) . (10)

It was necessary to compute three step ahead predictions
in straightforward way by establishing of lower predic-
tions to higher predictions. The model order defines that
computation of one step ahead prediction. It is based on
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three past values of the system output in case of a sec-
ond order model. The three step ahead predictions are as
follows

ŷ(k + 1) = (1− a1)y(k) + (a1 − a2)y(k − 1)

+ a2y(k − 2) + b1∆u(k) + b2∆u(k − 1) ,

ŷ(k + 2) = (1− a1)y(k + 1) + (a1 − a2)y(k)

+ a2y(k − 1) + b1∆u(k + 1) + b2∆u(k) ,

ŷ(k + 3) = (1− a1)y(k + 2) + (a1 − a2)y(k + 1)

+ a2y(k) + b1∆u(k + 2) + b2∆u(k + 1) .

(11)

The predictions after modification can be written in a
matrix form

⎡

⎣

ŷ(k + 1)
ŷ(k + 2)
ŷ(k + 3)

⎤

⎦ =

⎡

⎣

g1 0
g2 g1
g3 g2

⎤

⎦

[

∆u(k)
∆u(k + 1)

]

+

⎡

⎣

p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

⎤

⎦

⎡

⎢

⎢

⎣

y(k)
y(k − 1)
y(k − 2)
∆u(k − 1)

⎤

⎥

⎥

⎦

=

⎡

⎣

b1 0
b1(1− a1) + b2 b1

(a1 − a2)b1 + (1− a1)
2b1 + (1− a1)b2 b1(1− a1) + b2

⎤

⎦×

[

∆u(k)
∆u(k + 1)

]

+

⎡

⎣

(1− a1)

(1− a1)
2 + (a1 − a2)

(1− a1)
3 + 2(1− a1)(a1 − a2) + a2

(a1 − a2)
(1− a1)(a1 − a2) + a2

(1− a1)
2(a1 − a2) + a2(1− a1) + (a1 − a2)

2

a2 b2
a2(1− a1) b2(1− a1)

a2(1− a1)2 + (a1 − a2)a2 b2(1− a1)2 + (a1 − a2)b2

⎤

⎦×

⎡

⎢

⎢

⎣

y(k)
y(k − 1)
y(k − 2)
∆u(k − 1)

⎤

⎥

⎥

⎦

(12)

It is possible to divide computation of the predictions to
recursion of the free response and recursion of the matrix
of the dynamics. Based on the three previous predictions
it is repeatedly computed the next row of the free re-
sponse matrix in the following way

p41 = (1 − a1)p31 + (a1 − a2)p21 + a2p11 ,

p42 = (1 − a1)p32 + (a1 − a2)p22 + a2p12 ,

p43 = (1 − a1)p33 + (a1 − a2)p23 + a2p13 ,

p44 = (1 − a1)p34 + (a1 − a2)p24 + a2p14 .

(13)

The first row of the matrix is omitted in the next step
and further prediction is computed based on the three
last rows including the one computed in the previous
step. This procedure is cyclically repeated. It is possible
to compute an arbitrary number of rows of the matrix.

The recursion of the dynamics matrix is similar. The
next element of the first column is repeatedly computed

in the same way as in the previous case and the remaining
columns are shifted to form a lower triangular matrix in
the way which is obvious from the equation (12). This
procedure is performed repeatedly until the prediction
horizon is achieved. If the control horizon is lower than
the prediction horizon a number of columns in the matrix
is reduced. Computation of the new element is performed
as follows

g4 = (1− a1)g3 + (a1 − a2)g2 + a2g1 . (14)

2.2 FORMULATION OF OPTIMAL CON-
TROL WITH CONSTRANTS

In case of the Amira DR300 laboratory model, the ac-
tuator has a limited range of action. The voltage applied
to the motor must be within fixed limits. As it was men-
tioned in the Section 1, MPC can consider constrained in-
put and output signals in the process of the controller de-
sign. General formulation of predictive control with con-
straints is then as follows

min
∆u

2g⊤∆u+∆u⊤
HH∆u (15)

owing to
A∆u ≤ b . (16)

The inequality (16) expresses the constraints in a com-
pact form. In our case of the constrained input signals
particular matrices can be expressed as

A =

[

T

−T

]

; b =

[

1umin − 1u(k − 1)
−1umax + 1u(k − 1)

]

(17)

where T is a lower triangular matrix whose non-zero
elements are ones and 1 is vector of ones.

Forms of the matrices for an arbitrary control horizon
were computed and can be expressed as follows

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 0 . . . 0
...

... . . .
...

−1 −1 . . . −1
1 0 . . . 0
...

... . . .
...

1 1 . . . 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

∆u(k)
∆u(k + 1)

...
∆u(k +Nu − 1)

⎤

⎥

⎥

⎥

⎦

≤

−

⎡

⎢

⎢

⎣

1
1
...
1

⎤

⎥

⎥

⎦

umin +

⎡

⎢

⎢

⎣

1
1
...
1

⎤

⎥

⎥

⎦

u(k − 1)

⎡

⎢

⎢

⎣

1
1
...
1

⎤

⎥

⎥

⎦

umax −

⎡

⎢

⎢

⎣

1
1
...
1

⎤

⎥

⎥

⎦

u(k − 1)

(18)

The control sequence is computed from expression (15),
equations (17) and inequalities (16), (18). The optimiza-
tion problem is solved numerically by quadratic program-
ming in each sampling period. The first element of the
resulting vector is then applied as the increment of the
manipulated variable.
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3 MPC BASED ON MINIMISATION

OF ABSOLUTE VALUES CRITERION

Model predictive control can be also formulated for the
criterion based absolute values of predicted control error,
future control values and future control values differences

J =
N2
∑

i=N1

∣

∣ŷ(k + i)− w(k + i)
∣

∣+
Nu
∑

i=1

λ1(i)
∣

∣u(k + i− 1)
∣

∣

+
Nu
∑

i=1

λ2(i)
∣

∣∆u(k + i− 1)
∣

∣ (19)

where k is the current control step, ŷ(k+i) is the process
output in step k+i predicted using information available
upon the time k , w(k + i) is the reference signal in step
k + i and u(k + i− 1) are the future control values that
have to be calculated. Parameters N1 , N2 and Nu are
minimum, maximum and control horizon. The parame-
ters λ1(i) and λ2(i) are a sequences which affects future
behaviour of the controlled process. Generally, they are
chosen in the form of constants or exponential weights.
The criterion can be also considered as sum of 1-norm
of predicted control errors and weighted 1-norm of fu-
ture control actions and its differences. Contrary to MPC
based on quadratic criterion, a direct penalisation of con-
trol signal can be incorporated even for proportional con-
trolled systems while reaching zero steady control error.

The derivation of the control law is generally similar
to the derivation presented in the chapter 2. The output
of the model (predictor) is computed as the sum of the
forced response yn and the free response y0

ŷ = yn + y0 . (20)

It is possible to compute the forced response as the multi-
plication of the matrix G and the vector of future control
values u , which is generally a priori unknown

yn = Gu (21)

where

G =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

g1 0 0 . . . 0
g2 g1 0 . . . 0
g3 g2 g1 . . . 0
...

...
...

. . .
...

gN2
gN2−1 gN2−2 . . .

∑N2−Nu+1
i=1 gi

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(22)

is matrix containing impulse responses.

It follows from equations (21) and (22) that the pre-
dictor in a vector form is given by

ŷ = Gu+ y0 . (23)

The problem of minimizing the criterion (19) can be re-
formulated as linear programming problem:

min
t

g⊤
1 t (24)

where

g
⊤
1 =

[

11×N2−N1+1

λ1(1) . . . λ1(N2) λ2(1) . . . λ2(N2) 01×Nu

]

(25)

and

t⊤ =
[

r⊤(N2−N1+1)×1 s⊤1Nu×1 s⊤2Nu×1 u⊤
Nu×1

]

. (26)

Vectors t , r , s1 and s2 are auxiliary vectors. Their
subscripts in (26) represent the sizes. Minimization is
owing to constraints

−r ≤ Gu+ y0 −w ≤ r , (27)

−s1 ≤ u ≤ s1 , (28)

−s2 ≤ ∆u ≤ s2 , (29)

0 ≤ r , 0 ≤ s1 , 0 ≤ s2 . (30)

Inequalities (27), (28) and (29) correspond to the first,
second and third sum in the criterion (19) respectively.
Vector of control signal differences (∆u) can be expressed
by vector u and previous value of control signal u(k− 1)

∆u =

⎡

⎢

⎢

⎢

⎣

u(k)− u(k − 1)
u(k + 1)− u(k)

...
u(k +Nu − 1)− u(k +Nu − 2)

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

−1
0
...
0

1 0
−1 1

. . .
. . .

0 −1 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

u(k − 1)
u(k)
...

u(k +Nu − 1)

⎤

⎥

⎥

⎥

⎦

= r1u(k − 1) +R2u . (31)

where r1 is the first column of the matrix in equation
(31) and R2 is a submatrix of the matrix in equation
(31) without the first column. Handling of the linear con-
straints is similar to the handling of quadratic program-
ming constraints in chapter 2.2. The difference consists
in using control values instead of their differences

A1u ≤ b1 . (32)

The inequality (32) expresses the constraints of manip-
ulated variable in a compact form. In our case of the
constrained input signal, the matrix A1 and vector b1

can be expressed as

A1 =

[

I

−I

]

; b1 =

[

1umin

−1umax

]

(33)
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where I is an identity matrix and 1 is the unity vector.
Contingent constraints of the control signal differences
are handled in a similar way using (31).

As t is a vector used in minimization (24), all con-
straints of linear programming stated by inequalities are
formulated as follows

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−I 0 0 −G

−I 0 0 G

0 −I 0 −I

0 −I 0 I

0 0 −I −r2

0 0 −I r2

−I 0 0 0

0 −I 0 0

0 0 −I 0

0 0 0 A1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎣

r

s1
s2
u

⎤

⎥

⎦

≤

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

y0 −w

−y0 +w

0

0

r1u(k − 1)
−r1u(k − 1)

0

0

0

b1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (34)

The element u(k) obtained by numerical solution of linear
programming is then applied as the manipulated variable.

4 RECURSIVE IDENTIFICATION

The regression ARX model in the following form is
used in the identification part of the designed controller

y(k) = Θ̂⊤(k)Φ(k) + n(k) (35)

where
Θ̂⊤(k) =

[

â1 â2 b̂1 b̂2
]

(36)

is the vector of the parameter estimates and

Φ⊤(k)=[−y(k − 1) −y(k − 2) u(k − 1) u(k − 2) ] (37)

is the regression vector. The parameter estimates (36) are
computed using the recursive least squares method. Nu-
merical stability is improved by means of the LD decom-
position and the adaptation is supported by the direc-
tional forgetting [19–21]. The initial parameter estimates
were set to the values obtained at the end of the previous
experiment.

5 DESCRIPTION OF

LABORATORY MODEL DR 300

The proposed self-tuning (MPC) algorithms were
tested using a real-time laboratory model DR300 (Speed
Control with Variable Load) by the Amira Company,
Duisburg, Germany (see Fig. 2).

Fig. 2. Laboratory model Amira DR300

A block scheme of this system is shown in Fig. 3. The
plant is represented by a permanently exited DC-motor
(M1) whose input signal (armature current) is provided
by a controller. The sensors for the output signal (rota-
tion) are a tachogenerator (T) and an incremental en-
coder (I). The free end of the motor shaft is fixedly cou-
pled (K) to the shaft of a second, identical motor (M2).
This motor can be used as a generator. The rotation speed
of the motor M1 is driven by voltage u . The aim of the
control process is to control the rotation speed of the
motor M1 shaft ω (rpm) (rotations per minute) with the
control voltage u(V).

Fig. 3. Simplified scheme of Amira DR300 laboratory servo system

Fig. 4. Static characteristics of DR300 servo system

From the control point of view, the Amira DR300
is a non-linear system. Some characteristics of the non-
linearity (gain with dead zone and hysteresis) can be
observed from the static characteristics shown in Fig. 4.

It is obvious that friction plays a big role in this con-
trol problem. The control value in the approximate range
from −1 V to +1 V does not cause a rotation of the shaft.
Difference between static and kinetic friction can be ob-
served for control signal u around +1 V (and −1 V). If
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Fig. 5. Control of DR300 using STMPC QC (unconstrained case) Fig. 6. Control of DR300 using STMPC QC (constrained case)

the shaft is not rotating, control signal must be increased
up to 1.4 V to start shaft rotation. On the other hand,
if the shaft is rotating, decreasing control signal down
to 1.1 V still causes small shaft rotation. In addition, a
steady control signal below −2 V or above +2 V leads
to saturation. Moreover, the static characteristics in the
remaining ranges from −2 V to −1 V and from +1 V to
+2 V are not strictly linear. Another problem consists in
changes of overall gain of the system. These changes can
be caused by external conditions of the real-time control
process (humidity, temperature, etc).

6 REAL–TIME IMPLEMENTATION OF

ST PREDICTIVE CONTROLLERS

6.1 ST predictive controller based on minimiza-

tion of quadratic criterion

The aim of this chapter is implementation of the self-
tuning model predictive controller based on minimiza-
tion of quadratic criterion (STMPC QC) for control of
the objective laboratory equipment DR300 servo-system.
Courses of the reference signal contain step changes in
both directions. This is one of the most unfavourable sit-
uations which can occur in a closed loop control system
because the operational range also changes within the
steps. This is one of the reasons for application of self-
tuning controllers.

An approximate sampling period was found based on
measured step responses so that ten samples cover impor-
tant part of the step response. The best sampling period
T0 = 0.05 s was then tuned according to experiments.

The tuning parameters — the prediction and control
horizons and the weighting coefficient λ — were tuned
experimentally. There is a lack of clear theory relating
to the closed loop behaviour to design parameters. The
prediction horizon, which should cover the important part
of the step response, was set to N2 = 15. The control
horizon was also set to Nu = 15. The coefficient λ was
taken as equal to 50.

Both constrained and unconstrained cases were consid-
ered. Control results when constraints of the manipulated
variable were not considered are presented in Fig. 5

In the subsequent experiment the manipulated vari-
able was constrained within lower and upper limits and
the algorithm considering the constraints was applied.
The results are shown in Fig. 6.

6.2 ST predictive controller based on minimiza-
tion of absolute values criterion

Application of the self-tuning model predictive con-
troller based on absolute values criterion (STMPC AVC)
to the DR300 system is presented in this chapter. Course
of the reference signal and the sampling period are the
same as in the previous paragraph (STMPC QC).

Control courses for the settings of N1 = 1, N2 = 10
and Nu = 5 are presented in the Fig. 7. All coeffi-

Unauthenticated
Download Date | 4/17/18 8:36 AM



Journal of ELECTRICAL ENGINEERING 61, NO. 6, 2010 371

Table 1. Control quality criteria

Se2(104rpm2) Sdu2(10−3V2) Sea(rpm) Sdua(10−2V)

STMPC QC (constrained case) 8.10 3.50 66.17 1.59

STMPC QC (unconstrained case) 11.94 1.89 92.15 1.15

STMPC AVC 2.32 127.78 29.09 15.67

Fig. 7. Control of DR300 using STMPC AVC

cients λ1 and λ2 were equal to 0.2 in this case. The
controller was selected from the STuMPCoL (Self-Tuning
Model Predictive Controllers Library) designed for MAT-
LAB/Simulink environment [22].

Utilization of absolute values criterion leads to faster
response of the controller to the step changes of the ref-
erence signal. On the other hand, small changes of the
control error caused by noise have greater influence to
the control signal when comparing control courses with
the control courses obtained by MPC based on quadratic
criterion.

6.3 Numeric comparison of results

Control courses obtained by STMPC QC and STMPC
AVC can be compared either visually by observing con-
trol courses presented in Figs. 5–7 or numerically using
summing criteria of control quality. Four criteria based

on control error and control signal differences were used

Se2 =
1

b− a+ 1

b
∑

k=a

[e(k)]2,

Sea =
1

b− a+ 1

b
∑

k=a

|e(k)| ,

Sdu2 =
1

b− a+ 1

b
∑

k=a

[∆u(k)]2,

Sdua =
1

b− a+ 1

b
∑

k=a

|∆u(k)| .

(38)

Resulting values of the criteria are presented in Tab. 1.
Values of limits a and b were chosen to cover whole
course.

7 CONCLUSIONS

The contribution presented self-tuning model-based
predictive control applied to a highly nonlinear propor-
tional servo system. A linear model with constant coef-
ficients used in pure model predictive control cannot de-
scribe the control system in all its modes. Therefore, an
on-line identification was incorporated into the controller
to obtain self-tuning capabilities.

MPC based on quadratic and absolute values crite-
rion were derived and tested. The Amira DR300 servo
system was used for verification of proposed controllers.
The experiments confirmed that both STMPC QC and
STMPC AVC approaches are able to cope with the
given control problem. The courses obtained by the con-
troller based on quadratic criterion are smoother then the
courses obtained by controller based on absolute value
criterion. A reason for this behaviour consists in greater
influence of noise to the control signal when using abso-
lute values criterion.

Industrial applications of MPC are usually based on
optimization of economic factors while preserving techno-
logical constraints. This task can be usually represented
by either quadratic or absolute values criterion. Thus,
choice between quadratic criterion and absolute values
criterion should depend on individual application of the
MPC.
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